If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+14x-77=0
a = 1; b = 14; c = -77;
Δ = b2-4ac
Δ = 142-4·1·(-77)
Δ = 504
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{504}=\sqrt{36*14}=\sqrt{36}*\sqrt{14}=6\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-6\sqrt{14}}{2*1}=\frac{-14-6\sqrt{14}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+6\sqrt{14}}{2*1}=\frac{-14+6\sqrt{14}}{2} $
| 3(h-2)=5(4+h) | | 4x+2x+x=100 | | x=2-(19-x) | | 25x-36=18x+13 | | 2(f-1)=f+12 | | 3x÷2=3 | | 4=36º¢™¶m | | 3/4x-9=~17+x/4 | | 8x+4x-9=10x+7 | | 2x-5x=x-9 | | 3/4x=-17+x/4 | | 3(x-6)^2+15=27 | | -5=2(3x+1)-1 | | 5x+18=2(2x+5)-2 | | W=4u+3 | | 5x+3-x=3x12 | | 2/5(x-2)+3/7=1/7(x+1) | | 2,5x+6=1,5x+8 | | -3(8p+2)-2(1-23p)=3(7+7P) | | 3x^2+6x-24=4 | | 1,5x-17=0,5x+1 | | -5n÷2=2 | | 0.50f=0.3 | | w/5+20=40 | | 49x+76=48x+3 | | -16=y/3-6 | | 2x+333=3x+745 | | 3*(x)=27 | | -4x+182=-5x+981 | | 1-2v=-13 | | 2x+129=x+31 | | 4x62+20x-24=0 |